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Renewables are coming, even in Vermont
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2017 program ~15,000
electric water heaters

Up to a 50% increase in demand from clouds
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Connecting trends

Into virtual batteries
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Leverage key tools to coordinate at scale

Randomization
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Packetized Energy Management:. DER

When temperature is low, heating elements turns ON

and consumes energy - bulky demand
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e Packetizing bulky demand - many smaller energy packets
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Packetized Energy Management:. DER

Take a DER that has stored energy and occasional usage

TOO MUCH
ENERGY

TOO LITTLE
ENERGY

»

Temperature
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Turn off

—

Device requests
= power based on its
need for energy

—

Turn on

Great need for energy
» More frequent requests

Less need for energy
» Less frequent requests

Too little energy
» Just run to make sure people get
the energy they need (“temporary opt out”)

Guarantees QoS!



Packetized Energy Management: Fleet

$100 electricity

2¢ electricity
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And it works really well

Example simulation with 300 packetized water heaters

1000

= wind production
—demand

800

- Start choreography

\ \ \ \
% 50 100 150 200
300 5-kW water heaters choreographed by PEM to track
with 350+150kW of renewable generation in real-time
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Also Iin the real world (crushing peaks)

Post-event Return to

Pre-positioning 6-hour peak event recovery LoadShaper
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Also in the real world (arbitraging)
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Time Aug 11, 2018
ABOUT 60 WATER HEATERS, VERMONT ELETRIC CO-OP (raw kW data)
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More than just water heaters

PEM can coordinate diverse DERs under single VB
A ping is just a ping!

Two types of requests ~ D | verse V B
Charge , - -
-
Discharge

TCLs PEV Battery

Charge Charge Charge - Discharge

A single VPP coordinates requests from diverse types of DERS!
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Project approach

» Bringing technologies together
— Packetized Load Coordination (patented) is scalable,
privacy-aware, fair, and plug-and-playable.

— Model-Predictive Control will manage uncertainty in
available renewables and packetized loads to balance
net-load in T&D in receding horizon fashion.

VPP Market Participation (slow)

_________ | rFr—_ == = = — = — = —

Net-load balancing Feasible balancing Access )
_ request (fast) 3 _S’g_”a_/s faft)_ 3 _notification Packetizea
Asset
Asynchronous
(fast) N patch (fast) |

Aggregate net-load balancing access request

et-load balancing dis

Level 1: transmission Level 2: distribution Level 3: packetized load coordination

N 5

| | [+ J
— il a - - ﬂ \
CHANGING WHAT'S POSSIBLE



Packetized
VPP modeling, Virtual - algorithms for
guantify Power Plant L, \diverse DERS

uncertainty and | 2 L
flexibility — # oy T
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Project Progress

T&D modeling, optimization, control VPP tracking and inference

*Hourly realizable reference trajectories * Quantify uncertainty, tracking performance,

* Min-by-min AGC-like balancing signals communication needs

Packetized asset automata design
*e.g., TCLs, Evs, BESS

Uncertainty in VPP for T&D Validation with HiL Simulations
Chance-constrained optimization Small-scale complete; larger scale complete

Large-scale realistic simulations Utility demonstration with > 100 hardware devices
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Level 3: Virtual Power Plants (VPPs)
» Packetized devices are implemented in

Level 3: VPP with PEM

Devices asynchronously

software on PC and aggregated into local VPPS Python-based - — — — 2001 Packel 12auests B Simulated
server N N Y Poovces

manages VPPs

— ESPs are physical realization of VPP

4 —»
) Based on VPP set-point, server
Mg replies with Yes/No notification
N

High-performance desktop

» VPPs are implemented on server and

communicates with Level 2 and ESPs over
WlFl VPP HIL | Grid Coordination

| VPP states
Level 2: Distribution System Operator (DSO) E

.\\\ *updated by server
» DSO measures VPPSs’ local feeder/Xfmr flows e 4 e
and updates each VPP’s target values.

| mechanical assets/constraints

1
| VPP Coordinator dispatches
VPPs every minutes at feeder-
| level subject to grid constraints

|Aggregate VPP

| |balancing
| Isignals
|
Level 1
Transmission
MATLAB+AMPL solves SCOPF hourly

to provide robust economic trajectory
of and b il

Level 1: Transmission System Operator (TSO)

» DSO aggregating its local VPPs; updates TSO

>

» TSO determines balancing need and
communicates with Level 2 (DSO) via MATLAB

OPAL-RT OP5600 simulates

Transmission and Distribution systems MPC Corrective Dispatch updates
dispatch of balancing resources every
Grid Model minute from VPPs subject to

transmission constraints
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Validation plan (HIL)

* Major Tasks Completed

* HIL Implementation of Transmission and Distribution (T&D)
* Decoupled Approach

Node Voltage
(node-158) E
VELCO Transmission Distribution
substation voltage
s > 1500 single-phase nodes
¥ - . '
. a o
- - < S - ;‘_:. “‘ n.
¢ L~ ",'.. p .
LA '.m.t’
A %
[
GMP Distributi
> 500 bus system . stribution
T Distribution
D | substation power
Load PQ
(node-158)

Qi )@

CHAMNGING WHAT'S POSSIBLE



HiL experiment setup:

TS0

(MPC/AMPL)

VPP specs
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max
Pypps SOCypp3 Pypps

10X

aggregation

\_ VPP3(HiL) Y,

T
_________________________ . iL
i Pypp1 SOCvppi (S )
|
1 Pref
i —_— - \(/:.FL)Z Large fleet
------ i Pypp2 SOCypp2
I / \
» SubVPP1
DSO | subvpp2
disaggregation
(GAMS)
7,) » SubVPP3

Many smaller fleets

Bulk storage
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TSO-DSO-Fleet

TSO computes VPP balancing

DSO disaggregates VPP signal into sub-
VPP signals to fulfill VPP balancing

Sub-VPP accepts/rejects requests based

on available local DER flexibility
requests

Virtual Power
Plant (VPP)

control signals to DSO
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MATLAB and
ePHASORSIM

N

Power (MW)
Power (MW)

Diverse DER#

. . 20 = 2
Time (mins)

Time (mins)

Sub-VPP with PEM, Level 3
Transmission System Operator (TSO), Level 1

Distribution System Operator (DSO), Level 2 Dev ID VEC ID Paes ~ Relay State  PEM State
VEP Target Actual Power Energy
(ID) Power Bower Flox Flex VE VE  Target Actua  Power Energy 100 1 5 ON
(MW) (MW) (MW) (Mwh) C P Power | Flex Flex
D D (MW)  Powe  (MW) (MWh)
1 5 5.13 5 8.2 r 199 1 4.5 OFF
MWh (MW)
200 2 4 OPT-OUT
2 1 1 1.55 1.60 2 4.0
2 1 0.95 0.98 1.5 2.0
299 2 5 ON
N 3 2
k / \ ¢ 1 25 255 15 2.2
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Tracking with PEM (HIL)

» OPAL-RT’s ePhasorsim + 9000 simulated DERSs running on own clock and online
server (as VPP)
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Tracking with PEM (HIL)

» Packetized water-heater QoS » Packetized distributed batteries QoS
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Tracking a stochastic signal (HIL)
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Tracking a periodic signal (HIL demo)

10 Enphase’s AC Batteries packetized into VB

S ENPHASE

) Signal Tracking w/ 10 Packetized 250W Batteries

1.5+ l CHARGING >0
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E 0 %” OV Hours
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1.5 100 |

DISCHARGING <0
0 1 2 8 a4 5 s o 12 s 4 s

Hours
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Tracking with PEM (Large-scale sim)
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Qi )Q-@

CHAMNGING WHAT'S POSSIBLE

Conference call to be scheduled for April, 2019



Tech to Market Path and IAB

« Spin-off established in parallel to project (May 2016)
« Demonstrating & deploying NODES IP in the field

« Completed Berkeley/Haas C2M program.

« Completed Accelerate-VT program

« $350K seed investment round completed

« Awarded federal awards (>$500K) and more pending
« Raising pre-A/A round currently

Four industry-funded pilot projects ongoing

RLING T
oV Oy,

GREEN VERMONT CO .
MOUNTAIN ELECTRIC OR : RHA
Lepam et POWER delivering
5-year Phase Il 150 packetized DERs 300 packetized water Focused on resistive/heat
project signed with simulated live heaters, some pump water heaters to
grid conditions batteries mitigate duck-curve effects
EWHs + EVs EWHs + Batteries Mostly EWHSs Dozens to 100s in Phase 1

Qi D.J\."i"’e" 26

CHAMNGING WHAT'S POSSIBLE



Demonstration status with GMP

» GMP reached out to customers in Nov, 2018
— Received 300 responses within 1 week! S’l%%lil\lTAlN

» Jan 30th, 2019: total of 76 devices allocated POWER

— 20 devices deployed in homes already
— 40 signed contracts to be deployed shortly

- 24 of them at a single location (apartment building)
— 16 customers sent contracts and installed once returned

» Another 74 devices need a home and we’re working with
GMP to ramp up marketing and outreach.
— GMP has all Mellos already and expect good response

» Already have 8 packetized Enphase batteries (ACB1.0) and
looking to acquire a few of their new batteries (ACB2.0)

P leC
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Tech to market path

COMMERCIAL VALIDATION
& PARTNERSHIPS

Launching new projects in CA,

SCALING

Proving value, sales, moving
from demonstration projects
to full-scale deployment

&= CBINSIGHTS

“Game changing

new OEM partnerships, startups of 2019”
CUSTOMER ADOPTION  System deployment
Launched 2 new projects,
UL listed smart device for J\
water heaters, new DOE GREEN )
’ MOUNTAIN
TECH ADVANCEMENT ~ and NSF grants awarded POWER
$2M ARPA-E pI‘OjeCt, Q deliveringsolutions
company founded, second VERMONT €0 — ENPHASE
patent disclosure, ELECTRIC OPR
IP DEVELOPMENT  awarded first pilot
. . “LiNGT S, U.S. DEPARTMENT OF ‘h,ebOSto
Initial R&D, first R o o A 7> )ENERGY Feel the Drive
patent disclosure Q) [j(i°@ @ k=N
applied to EVs CHANGING WHAT'S POSSIBLE vy
@ America’s .
i SEED FU\\D
SBIR.STTR
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Tech to Market Path and IAB

DER coordination platform running Mello™
UL-listed smart

with real hardware in the loop s -
o ® thermostat for
- water heaters

PoC solutions for connecting EV
chargers and distributed batteries*,

and more
*working prototype with = ENPHASE

Still to come: HVAC + Heat-pump

Deployment Programs

 Fuel switching enabling utilities to
<ate and Scoft f SE at DTech sell more clean electricity
ate and Scott from P at Dlec « Marketing for rapid DER adoption
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Virtual battery & physical battery

Battery designed to power Equivalent Packetized Virtual Battery
1000 homes for four hours (1MW, (2000 devices, 1MW, 4MWh)
AMWh)

About half the cost of

N7 prﬁﬂt. batteries today and
getting better!

Upfront cost $450 $ 1,800,000 Upfront cost $ 200 $ 100 $ 400,000
Ongoing O&M cost $5/yr $ 20,000/yr Software $ 30/yr $ 15/yr  $ 60,000/yr

Customer dividend 0] $0 Customer dividend $ 30/yr $15/yr $ 60,000/yr
Present value cost $481 $ 1,922,891 Present value cost @84 $ 1,1@

Qi °|.9\i(‘3 30
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Tech to Market Plan

Nimble™ virtual battery software platform

(( PeakCrusher. Advanced peak reduction tool. Pre- “NODES Cat. 3"
positions before events and adapts to real-time conditions
to avoid cold/hot load pickup (Online today at utility)

m LoadShaper. Automated energy arbitrage to minimize “NODES Cat. 2

| ‘ wholesale energy costs (Online today at utility)

4 MODULES

g H g FastTracker. Access ancillary service markets with fleets “NODES Cat. 1”

of grid-edge, packetized DERs & direct access to markets
(in R&D)

mitigating T&D CapEx and manage DERs within (local)

% GridSolver. Data-driven, real-time grid management to Grid services
physical constraints (In R&D)
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Next steps

* Help GMP finish deployment
e Get OpenADR up and running between UVM and PE
* Install and test a couple larger batteries

 Complete GMP demonstration of > 100 diverse DERs
 Final report and benefit analysis

« Extend PEM to faster time-scales (FastTracker)
* Incorporate live grid conditions into PEM (GridSolver)

Qi D|.3\..'i“' S 32
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y 2019

IEEE PES B

GENERAL MEETING §

4-8 AUGUST
ATLANTA, CA USA B8

Join us in Atlanta, GA!

Sl F EXPECTUNCERTAINTY[ PREPARE TO ADAPT

Optimization Methods for Unbalanced Power Distribution

Systems (2 NODES teams) Chair: WSU
Enabling Advanced Grid Operations with DER i
coordination (5 NODES teams) Co-chair: PNNL
Advanced Grid Architectures to support scalable DER Co-chair: SCE

integration (5 NODES teams)

Dates to be set shortly
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